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di tribut iori unlimited

AbstractAssoctid with each structure state is a reward rate (e.g.. service

Abs t rt coptrsse hne hi ee f rt or throughput). It is particularly useful for our unifying

pfrancert gmd operain sservcne rteirepne to anaslysis to consider the execution of a particular job on the
peforneetg.,c mo" faiue operaation orvc rea) W prseint system. In this case the reward rate represents the service rate

a umifed model for the analysis of job (task) complewin um n (e g , the number of instructions executed per unit time) It is
the accumulated service (reward) until a given time (also known as obiu that the completion time of the job is affected by the
performability). In prior work, the evaluation of the distributaon preemptions and the possible variations; in the service rate due to
of perforinability was restricted to nonrepairable sytm changes in the structure state of the system. If the job servit is

(repesetedby cycic Mrko chins. L thi paerwe escibe always resumed after preemptions, then the completion time or a
a(repreted for theli nmeriochalinsn othpaer ietrbu ribe given job and the cumulative servce (measure or reward) until a
peraloritym for tob compeionl eti m or reaiabe diibutiosO given time are dual measures so that the distribution of one allousperormbilty r jb cmpltio tme.in eparabe fulttelmt us to compute the distribution of the other. This is a ke'system (represented by cyclic Markow chains). We demnstrate observation because the analysis of the completion time yields thethe feasibility of our techniques by means of numerical examples. distribution of the cumulative measure (accumulated reward or

Keywords. Degradable/Repairable Systems Marko Reward performability) which can be appropriately specialized to obtain
Processes. Numerical Methods, Performabdlity Modelling, Task different system-oriented measures as will be shown in Section 2.
Performance. Task-Oriented Reliability. Howard 191 studied the expected accumulated reward until a

given time in Markov and semi-Markov reward proceinew. Other
1. Inrduto authors (5,7,14) have studied the distribution of the accumulated

Theinceasd rliailiy rquremntsof resnt ay ystms reward in acyclic reward proceses. under the assumption that
h ve ause se rbl-oerant and eurensoprtda systemstobcm preemptions do not result in a loss of work. lyer et al. '10L~vecaued iul-toerat ad dgraabi sytem tobecme ore considered the evaluation of the moments of the accumulateaimportnnt. For these system, it is important to introduce reward in cyclic Markov reward processes In 12.13 w- ha% e

measures that reflect both performance and reliability of the cniee h nlsso h o opeintm ntepeec
system. Several authors have developed models for the evaluaumo of different types of preemptions. with the possibility of loss of aifl
of reliability, performability and program performance (e.g.. Lask wok(n hihcstejbhatoerpaed.n epeet
theseto d iffe melss) Thi ap sisl ande whichp to useflf paper, the distribution of the accumulated reward in cyclic andthes difernt mdel wih asinge wode whch i usfulfor acylfc Markov reward processes is derived as a special case of theamesng the behaviour of degradable/ repirabl e computer more general analysis of job completion. We give an algorithm for
systems. the numerical evaluation of the distributions of the job completion

As pointed out by Meyer (15;, distributed and multiple time and perforinability measures in repairable fault-tolerant
processor systems are generally characterized by three main systems. The work presented in this paper is a gnticant;
features- concurrency, fault-tolerance asd degradable performance, contribution, since the earlier work was restricted to nonrepairable
krthermore. real-time systems must also posess the timnelines systems.
pro ..rty. Traditional system-oriented reliabilitylavailabiityInScin2wentouehemhmaclmdlse

models havei covre the iaulroolranc tpec maheatca mod-o.enomeisodl hvecvee te alttleaneaeth 9 Jbonne definitions and notation-- The transform solution of the completion
reh~bdiv mdel hae ctere to faut-tlerncetime and the cumulative measure is derived in Section 3 An

timeliness aspects simultaneously 12.111. System-oriented aloih frtenmrclevuton ftes mauess
performability models have included both !fault-tolerance and agrtmfrtenmna vlaino hs esrsi

oegradable performance in system evaluation iS.7,l0.14: The presented in Section 4 I Section 5. we give niontrivial numerical
unifying aspect of this paper is that tanlt-tolerance. degradabie examples to demonstrate the use of the solution technique and the
performance and timeliness are addressed simultaneousy feasibility of the algorithm developed.
Concurrency. and timeliness issues are addressed elsewhere 182.TeBscMdladD nion

I the model we develop, changes in the structural stteo Consider a particular job to be processed on a given
thse computer system caused by different events are described by a coptrste Thwrkeqimntftejb saadm
stochabtic prcs rfre oa h 'tic~r-tt'poe~ variable B. and is measured in work units (e g.. the number of

'VWnrt sapported b ' Air Force Ofice of Sattuic Resnarsoe cru instructions to be executed) It hat the distribution function
AF051144-ir ad AFOSR-84-0140 by Ara" Retawet offce *&der woiz. C(ir) = PB < ir) and the L.ST (Laplace Stielties Transform'*
D.%G2jg94-OoN and by National Science Fouseum vader grat bCS-93OM



C() E(c-'). It is assumed that G(0+) -0. System relisbi4l, R (1): ket X be the time until system failure.
The stochastic process. {Z (t ),t > 0), which describes tbe i~e.. the time until the structure-state process enters a failure set or

behaviour of the system in time (the structure-state processi is a stesIweet-lfrllsas thtreo cnaednan
time-homogeneous continuous-time Markov chain (CTMC). Z Ct) failure set of states, then
is the state of the system at time I1. This stochastic process is R (t)-P(X > t)-Lim P(Y(-) > t)
assumed to be independent of the work requirement of the job. At
any given time, the system can be in one of x states. In state
the system serves the job at a rate ri ? 0, 1 < i < n . The set of Total ,up" or "des" time utsl time t, U(t ) or D(f ): the
states 1,2,...,xa is canootically partiioned into k -;I sets; namely, system is said to be "up" if it is in a state iwith r, >0. otherwise
S7,SC 1,SC2,,..,SC*, such that Sr. is a set of transient stag"s and it is said to be "down". U(1) (or D (f)) is defined to be the towa5 ca' 1 <i < k, is a closed set of recurrent states. (If the system time the system spends in "up" (or "down") states until timeenters a closed set of states, it st, yz there forever.) A recurrent get min (f X), where X is the system's life time. Clearly if we set
is called a "failure" set if the reward rate isequal to sero in aits al rj >0 to1, then
states, otherwise it is called a "nonfailure" set. If the system
enters a failure set, it stays therm and offrs no more servce P(UOt :5 2) -PYt : z)
(system failure). On the other hand, if the system eaters a and, since
nonfailure set, it stays there and the job wil eventually complete. t) DO mn(X

Let qj,, 1 <i~J : u, i -#j, be the infinismal U1+~)ri~,)
transition rate from stWa i to stVA i. it follows that
Q -q ,1 < iJ :5 xis the a by as generator mattnx, where P(D(t)~ : ).-P(Y(t) ? min {tX) -z)

j'i system spends in "up" states in the interval M0t ). i.e..
Al (t ) - U(t )/ t . The disitribution of the interval arailabilityNote that rorw sumas of Q are equal to sero (i.e., Qt~-~ where S has been a subject of recenit investigations (81.

is the n by I vrector with all eements equal to oneLand Qis the a In Section 3. we derive double-transform equatcim for theby 1 zero vector). distributiom of the job completion time and the cumulairre
Now let us introduce some important performance measures measure, and in Sectsc 4 we describe an algorithm for Lbethat will be used throughout the paper. numerical e'ruluatksa of these distributions. In the remainder of

this sectiome we introduce some notations that will be used laer.
Cumulative messase, Y(t ), is the total reward gained in an Define the distribesioci functins
structure states until time t(in this paper we also refer to it as
the accumulated reward or performability), i.e., F(t,z)"P(T(s ) :5 t I Z(0) - i), x >0, 1 < i< x

Y(t) f rz(k) dk . I (- Lim Y(1)) is the cumulative F(r) - P (T()t), x >0,
ma' until system failure fl.20!. Y(t ) can be specialized toF()- T <1I 0)i, 1 : .
do. 'folowng job. and system-oriented measures.

Job completion time, T(z), is the time needed to complete a job F(t) - P(T < t)
whose work requirement is x units of work. T denotes the and the LST 'a
completion time of a job that requires a random amount of work,.i ax E( 0)q x>0B . Since Y (t) represents the useful work done on the job untilF 1 (a.)-Ee T ' Z()iz 0,1<i .(.1
time t, it is a nondecreasing function and has piecewise continuous From the independence of (Z (I ),t > 0) and B it follows that
paths. It follows that T (z) - min (f > 0: Y (I )-.z ) and F(z lt WT - min~t > 0: Y(t)-B ) . The analyzssf the job compleumnFez)Ee T '
time has been considered for special cases in (2,6,161.Z)VM 

i x> .P roba bil ity of amussivit faisre, V~s), is defined to be the F(.)PZ )-)z>0(.
probability that the system fails before the completion of a job F'()-Ee ()i
that requires z units of work. Thus F s E( 0-

If q~ denotes the probability that the system fails before the .~' (a.z) dG(r), I < i n , (
completion of a job with random work requirement. then

a? -P ('(t )< B. fori B I >0)-P (T -0o) . F" (8 s.E(c'r)= F. F, P(Z(0)=i). (4
A related measure is the dynamic failure probability in real-time -
systems. For a hard deadline d. it is given by 17- P (T > d). The oamio failure probabilityr, Y7, follows from
and is readily obtained from the distribution function of T. rl- P(T - oc) -- Lim F' (a)

I denott it L.ST at.. the Laplae u,.sonu or a probabiaty deasty
funcion. and E(. as ant epttwai operator
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3. The Transform Solution 00
We give the transform solution for the distribution or the ob Y (iJ)- I-uf e"  P(T() _t)d.

completion time in Theorem 3.1. In Theorem 3.2 we present a
useful dual relationship between the cumulative measure and the Multiplying by e"t and integrating with respect to t . Equation
completion time. (3.3) follows. Q.E.D.

Let us first define the following transforms We can rewrite Equation (3.3) in a matrix torm as follows

"(u ,t) E'-(, ) _- " Y (z t) t I ) [.1+ uR - Q,-' I (3.3a)
o where we made use of Equation (3.1a) and the relation Q1 = 0

Equation (3.3a) was derived in 117! using a different approach.F" (s, .)- E(c"r(8)), F" "(S . f ) e- ' F" (s x=) .
0 4. An Algorithm for Numerical Computations

The following notations will be used In this section we consider the evaluation of the distribution
function of the cumulsive measure,

Y(:,t)=-P(Y(t)< IZ(O) =i), 1< I <

's (",,) - *Y1 " (V , ),Y , )(s ') Y., I ), from Equation (3.3a).

r 1, 1,r 2,...,r. I and R - diag f, ,r2,...., r, Let A - [&I + %R - Q f, then by Cramer's rule we have

where the superscript T denotes transpose. Y I') D,- 1 < i <n, (4.1)

Theorem 3.1: where D(i *a) is the determinant of A, and N, ( ,a ) is the

The double transforms F;" s ,v ), 1 < t < n, satisfy the determinant of A with the ith column replaced by .. Clearly.
following equations D(s a ) and Nd. a a) are polynomials. in % and a. Therefore for

a fixed value of v, Y *(,*) is a rational function in a. say
F: , ,) i , q IsI N,(a )/D(# ). Once the roots *i("),a2(').,(v) of the

a +qj -1-rj + , ' -;-9 r, " (3.1) polynomial D(s) are determined, we obtain the partial fraction
i~, expansion of Y (N s ) and then invert analytically with respect

Since the matrix [.I + %R - Q I is invertible, Equations (3.1) can to s. These roots are precisely the eigenvalues of (Q - *R 1, and
be written in a matrix form as follows are determined numerically using orthogonal transformations and

E S (,')- fd + UR - Q]'L ( la) the Q.R algorithm f211. Let D(s) be given by 'l(S -e,(a)).
where I is the identity matrix. The proof is given in 1121. where each of its distinct roots: namely, ,(a 1 _ . < d, has

The following theorem presents a useful dual relationship multiplicity mi. Then we can write the purtuil fraction expansion
between the cumulative measure at a given time and the as follows
completion time of a given job. As a result, knowing the , N,() .

distribution of T(z) allows us to determine the distribution of Y, ) ( - ) ( - a, (u )' (4 2)
Y(t). Consequently, system-oriented measures such as system D()

reliability, interval availability and others can be determined by We then choose a values of s that an not too close to any
appropriately speci ng the reward rates in different structure a, (v), I < j < d, and substitute in Equation (4.2). From the
states (as discussed in Section 2). resulting linear system of equations, the a unknowns ,,k (V ) are

uniquely determined. Now we invert Y, *( .a ) analytically with
Theorem 8.: respect to s , to get

The distribution function of the cumulative measure, Y(t), . (d .(
is related to the distribution function of the completion time ]i (S,t) _ E "t(! ) t -1 e (4.3)
T(z), as follows ii- I-_ (k--)!

P(Y(t) < z)- 1 -P(T(z) < t) (3.2) Once we have Y (%,t), we invert numerically with respect to u
as follows.

and the corresponding double transforms are related as follows For notational smplicity we let Y,' (a .t) be V(v ) and
Y' *(, -1 - %F' ,(s (3.3) Y, (z ,t) be v (z). This will avoid the confusion between the

- subscript i and the radical i-v'-r that we need below. We

Proof.- secure the inverse of V(s ) with the unversion formula

It is clear that u(z)== . f e V(N)d% . (4.4)

Pf}'(t} < z) -P(T(z) > t), 2 _=

since these are the probabilities of two identical events, and Now let I (z) be a periodic function whose period. 2r. is the

Equation (3.2) follows Multiplying both sides of Equation (3.2) by interval or interest. such that I (z) = e" v (z). 0 < z < 2r

e "' and integrating with respect to z .we get The parameter * is chosen so that yIz) is a bounded function
An approach to approximating v (z) over the interval 0 < z < 2-,

(0) denotts tht Lapliet triasform or a ruoction is to obtain the Fourier series expansion of the function g (z)

-3-



V(r) .- . [V(a) + , [Re(V(s + k -,/r)) co(k r/r) described above to obtain the distribution of performability. For
r k-1 N processos and 4 buffer stages, the system is modelled as an

M/M/N/N+i queueing system. Jobs arrive at rate A and are
- Im(V(s + k ri/r)) sin(k m/r) . (4.5) last when the buffer is full. The job sermce rate is e. Processors

fail independently at rate X and are repaired singly with rate p
The above senes is approximated by the first m terms. It has Buffer stages fail indepeudently at rate -y and are repaired singly
characteristically slow convergence, but it can be accelerated by with rate r. Processor failure causes a graceful degradation of the
continued fraction methods such as Wynne's e algorithm, or the system (the number of processors is decreased by one). The system
quotient-difference algorithm of Rutishauser with a remainder is in a failed state when all processors have failed or any buffer
estimate suggested by De Hoog 13]; we use the Latter approach. stage has failed. No additional processor failures are assumed to

We now give the algorithmic structure for the computation occur when the system is in a failed state. The model is
of Y, ( ,t ) for a system with a states. represented by a CTMC with the state-transito diagram shown

in Figure 1. At any given time the sate of the system is (, , )
A for ( m values ofa ) where 0 < i < N is the number of nonfailed processors, andI is

zero if any of the buffer stages i failed, otherwse it is one. An
determine e;i) (QR algorithm) 0(0') appropriate reward rate in a given state is the steady-state

B: for(sa valuesof, 7#s,(a),i :_ j 5 d ) throughput of the system with the given number of nonfailed
{ procesos (the throughput formula is a well known result 119)).

determine Ni(u ,e)( Evaluate determinant )0 (a ) The reward rate is sero in any system failure state.
determine s,. (a) ( Solve linear system) 0 (a') We evaluate the distribution of performability, Y(t ), given

I that the system started with all its processor, and buffers
} operation^, for utilization period of 10 bous. The nun ber of

C: for (p different values of t ) procemoe s A eight, each with a failure rate X - 0.01 per week and
{ a repair raze p - 0.1668 per hour. The individual buffer stage

D: for ( m values ofa ) failure ra.e - - 0.22 per week and its repair raze r - 0.1666 per
( Evaluate (4.3) for a given time t 0(a) hour. ks arrive at rate A - 170 per hour and the service rate for

E. for(q different values of r ) igle proessore - 20 jobs per hour. In Fure 2 we plot
{ the di~sibzlon of performnability for different numbers of buffer

Evaluate finite approimation stages. We observe that fewer buffer stages provide a lower
to (4.5), for a given ( ,t ) pair 0 (M) maximum accumulated reward but a more favourabk distribuuon

) of Y(t) (i.e., lower -alues of P(Y(t) < r), for a given x less
than the maximum possible reward). The rnm time of our

Since the number of repetitons of the inner loop B s 0 (i), algorithm for this example (with an underlying Markoy chain of 16
clearly thr algorithm requires 0 (a m ) time to compute Y, (z ,t) states) on a VAX/750 is 100 seconds. The distribution of the "up"
for a given (r ,) pair. Because most of the computational effort time, U(t ), can similarly be evaluated by setung the reward rates
occurs before step C, additional values of Y,(zf) can be in all nonfailed states to one. The complementary distribution of
computed cheaply. Y, (,t) may be evaluated for q additional the interval availability, A, (t) ( - U (t), t ), is plotted in Figure 3
values of : at an increase of only 0 (qm) com~,utation time, since for different numbers of buffer stages. The interval availabilit%.
just loop E must be recomputed for the new values of z. To Al (t), is lower for more buffer stages. thisi s due to the increase in
obtain Y', (r ,t) for a different value of t and q different values of the total buffer failure rate (notice that with more bfer stages the
r reqtures only that loop D be performed m times and loop E !e interval availability is not ffected by the increased reward rmtes Ln
performed q times. The computational burden for the nev I "up" states). The reliability of the system. R (t), can be
value is thus 0 (mn -+ mq ). For example, if we wish to obtain determined by disallowing repair from all system failure states and
the values of Y, (r ,t ) for p values of t and q values of z for each evaluating the complementary distribution of the "up" time for
value of t (as on a rectangular grid) then the pq values could be infinite utilization period. Thi' is plotted in Figure 4 for different
determined in 0 (s 4 m + mp (a -t .q) ) time. It should be noted numbers d buffer stages.
that the Arage requirement ia independent of the number of Let m now cocider an example to compute the distribution
(Z ,t ) pairs for which Y (z ,* ) is evaluated. The matrix €emrtbous of the job completion time on a two-processor
in loop B require 0 (n2 ) storage. The j, (v) evaluated for the (degradable/repairable) system. The system is mbject to total
0(mn) values of e;(s) are heeded to perform loop C, and m failure (due to imperfect coverage 119,0f0 or exhaustion of
values of Y(vt) evaluated from (4.3) are required in loop E. processors). The processor failure rate is -i ;- 0 . the processor
Hence the total space requirement is 0 (x2-- r un) Accurate repair rae is r - 4.0 and the coverage fctor is c -=0.99. The
resuAs are readily obtained when 80 teriz- are used to i.pproximate CTMC representing the system is shown in Figure 5. in which the
(4.5) (m am 80). In the ne section we give two ndrmencal sttes 17. and 0 represent a system with two one and no
examples illustrating the feasibly a -he above algorithm opersai processors. respectively. It is further assured that the

job can be divided into parallel subtasks, so that if both procesors
5. Examples are operational the service rate is increased by a factor r.

First, we consider a fault-tolerant multiproc - system with I < r < 2. Let the service rate in state I be r. i 1, then the
finite buffer stages A similar two-processor system (wthout repair) service rate in state 17 is ro - r. We choose r - 1.6. Consider
was considered by Meyer 114: , and ws extended b-, Iyer et al 10 the execution of a job with work requirement equal to z on the
to include repair In !I0' they describe a numerical algorithm to system. In Figure 6 we compare the distributn of the job
compute the moments (rather than the distribution) o completic4 ume. when executed on dTfferent systems. namek. a
performability In our example we use the numencal technoue single processor system. a two-processor system wu and without

-4-



I10, Iyer. B R-. Doosatiello. L and Heidelberger, P., 'Analysis ofrepair In other words. we study the effect of redundancy and Prf-Abah for Stochastic Models of Fault..Toleriint
repair La, faltoemt~ systems The favourable effect of Systems," IBM Retearch Report, RC-10719. September 1884.
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whtick uwaatus occur mn response to events such as failure. repair Ehuever Semaee PubLishms B.V. (Norh-Holland), 1984. pp.
or system dlepadaia. A reward rate (or performance measure) as31"
amocuaae it em stutr sta'-. [161 Nicola, V. F., "A Smigie Server Queue with Mixed Types; of

We gave the trasaorm solution for the distribution of the job [17] puk P .PS.Atod foper SnAtsin therw~ In M.alFntin
completion tame. and relaxe it to the transform solutioo of 111Pr.PS.-Mehdfrtuyn eItgalFcosi
perform .bility Thus a a weful duel relationship, smet it enables of Stockis"s Processe with Applicatons: 1. Markoy Chain

ato dem"v from the enalysts of the completion time other Case." J. Ap* Pre4. 8. 1871, pp. 331.3U3.
asesar such se perforuability. system reliability, up/down time. 1181 Ssaer, R. ad Tredi, K. S., "Performance and Reliability
ad the distributic of interval availability frA&alYm Usun Directed Acyclic Graphs." inre w

119) Twdi. &. S., Pre~tbr and Statistics vitA R~iiWe kave develo~ped an algorithm the numencal Qa-umf end CompsUtr Scieste A ppfa ite,.sa, Prentice-Hall,
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